An Evolutionary Perspective on Epistasis and the Missing Heritability

نویسندگان

  • Gibran Hemani
  • Sara Knott
  • Chris Haley
چکیده

The relative importance between additive and non-additive genetic variance has been widely argued in quantitative genetics. By approaching this question from an evolutionary perspective we show that, while additive variance can be maintained under selection at a low level for some patterns of epistasis, the majority of the genetic variance that will persist is actually non-additive. We propose that one reason that the problem of the "missing heritability" arises is because the additive genetic variation that is estimated to be contributing to the variance of a trait will most likely be an artefact of the non-additive variance that can be maintained over evolutionary time. In addition, it can be shown that even a small reduction in linkage disequilibrium between causal variants and observed SNPs rapidly erodes estimates of epistatic variance, leading to an inflation in the perceived importance of additive effects. We demonstrate that the perception of independent additive effects comprising the majority of the genetic architecture of complex traits is biased upwards and that the search for causal variants in complex traits under selection is potentially underpowered by parameterising for additive effects alone. Given dense SNP panels the detection of causal variants through genome-wide association studies may be improved by searching for epistatic effects explicitly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging the Gap between Statistical and Biological Epistasis in Alzheimer's Disease

Alzheimer's disease affects millions of people worldwide and incidence is expected to rise as the population ages, but no effective therapies exist despite decades of research and more than 20 known disease markers. Research has shown that Alzheimer's disease's missing heritability remains extensive with an estimated 25% of phenotypic variance unexplained by known variants. The missing heritabi...

متن کامل

Travelling the world of gene-gene interactions

Over the last few years, main effect genetic association analysis has proven to be a successful tool to unravel genetic risk components to a variety of complex diseases. In the quest for disease susceptibility factors and the search for the 'missing heritability', supplementary and complementary efforts have been undertaken. These include the inclusion of several genetic inheritance assumptions...

متن کامل

Finding the epistasis needles in the genome-wide haystack.

Genome-wide association studies (GWAS) have dominated the field of human genetics for the past 10 years. This study design allows for an unbiased, dense exploration of the genome and provides researchers with a vast array of SNPs to look for association with their trait or disease of interest. GWAS has been referred to as finding needles in a haystack and while many of these "needles," or SNPs ...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

RAPID PUBLICATION The Evolutionary Paradox and the Missing Heritability of Schizophrenia

Schizophrenia is one of the most detrimental common psychiatric disorders, occurring at aprevalence of approximately 1%, and characterized by increased mortality and reduced reproduction, especially in men. The heritability has been estimated around 70% and the genome-wide association meta-analyses conducted by the Psychiatric Genomics Consortium have been successful at identifying an increasin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013